How do you find the integral of 1/(x^2sqrt(25-x^2))dx?

1 Answer
Mar 1, 2015

The answer is: -sqrt(25-x^2)/(25x)+c.

We have make a substitution:

x=5sintrArrdx=5costdt,

so:

int1/(x^2sqrt(25-x^2))dx=int1/((5sint)^2sqrt(25-25sin^2t))*5costdt=

=int(5cost)/((5sint)^2sqrt(25(1-sin^2t)))dt=

=int(5cost)/(25sin^2t*5cost)dt=1/25int1/sin^2tdt=

=-1/25int-1/sin^2tdt=-1/25cott+c=-1/25cost/sint+c=(1)

since

sint=x/5 and cost=sqrt(1-sin^2t)=sqrt(1-x^2/25)=sqrt(25-x^2)/5

than:

(1)=-1/25sqrt(25-x^2)/5*5/x+c=-sqrt(25-x^2)/(25x)+c.