How do you find the integral of (2x-3)/((9-x^2)^0.5)dx2x3(9x2)0.5dx?

1 Answer
Aug 5, 2015

-2sqrt(9-x^2)-3arcsin(x/3)+C29x23arcsin(x3)+C

Explanation:

Start off by rewriting as follows

int (2x)/(9-x^2)^(1/2)dx-int 3/(9-x^2)^(1/2)dx2x(9x2)12dx3(9x2)12dx

For the first integral we use a u substitution

Let u=9-x^2u=9x2 then (du)/dx=-2xdudx=2x

dx=(du)/(-2x)dx=du2x

Make the substitution

-int (2x)/u^(1/2)(du)/(2x)=-int u^(-1/2)du2xu12du2x=u12du

Integrating we have

-2u^(1/2)2u12

Back substituting for u

-2(9-x^2)^(1/2)2(9x2)12

-2sqrt(9-x^2)29x2

For the second integral we will use a trigonometric substitution

Let x=3sinthetax=3sinθ the

dx=3costhetad thetadx=3cosθdθ

Make the substitution

int 3/(9-9sin^2theta)^(1/2)3cosd theta3(99sin2θ)123cosdθ

int (9costheta)/(9[1-sin^2theta])^(1/2)d theta9cosθ(9[1sin2θ])12dθ

3int costheta/(cos^2theta)^(1/2)d theta3cosθ(cos2θ)12dθ

3int costheta/costhetad theta3cosθcosθdθ

3int d theta3dθ

Integrating we get thetaθ

Now theta=arcsin(x/3)θ=arcsin(x3)

So we have 3arcsin(x/3)3arcsin(x3)

Putting the two results together we have

-2sqrt(9-x^2)-3arcsin(x/3)+C29x23arcsin(x3)+C