How do you find the integral of e^(2x) cos3x dx?

1 Answer
Mar 26, 2018

inte^(2x)cos3xdx=e^(2x)/sqrt13 cos(2x-tan^-1(3/2)) +c

Explanation:

We know that,

color(red)(inte^(ax)cosbx dx=e^(ax)/(sqrt(a^2+b^2))cos(bx-theta)+c

where,color(red)(costheta=a/(sqrt(a^2+b^2)) and sintheta=b/(sqrt(a^2+b^2))

Substituting , a=2,and b=3, we get

costheta=2/sqrt(2^2+3^2)=2/sqrt13 and sintheta=3/sqrt(2^2+3^2) =3/sqrt13

=>tantheta=sintheta/costheta = (3/sqrt13)/(2/(sqrt13))=3/2=>theta=tan^-1(3/2)

So,

inte^(2x)cos3xdx=e^(2x)/sqrt13 cos(2x-tan^-1(3/2)) +c