How do you find the integral of e^(2x) cos3x dx? Calculus Techniques of Integration Integration by Parts 1 Answer maganbhai P. Mar 26, 2018 inte^(2x)cos3xdx=e^(2x)/sqrt13 cos(2x-tan^-1(3/2)) +c Explanation: We know that, color(red)(inte^(ax)cosbx dx=e^(ax)/(sqrt(a^2+b^2))cos(bx-theta)+c where,color(red)(costheta=a/(sqrt(a^2+b^2)) and sintheta=b/(sqrt(a^2+b^2)) Substituting , a=2,and b=3, we get costheta=2/sqrt(2^2+3^2)=2/sqrt13 and sintheta=3/sqrt(2^2+3^2) =3/sqrt13 =>tantheta=sintheta/costheta = (3/sqrt13)/(2/(sqrt13))=3/2=>theta=tan^-1(3/2) So, inte^(2x)cos3xdx=e^(2x)/sqrt13 cos(2x-tan^-1(3/2)) +c Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 13269 views around the world You can reuse this answer Creative Commons License