How do you find the integral of e^(2x) cos4x dx?

1 Answer
Oct 10, 2015

Integrate by parts twice using u=e^(2x) both times.

Explanation:

I = int e^(2x) cos4x dx

u= e^(2x) and dv = cos4x dx

I = uv-intvdu

= 1/4e^(2x)sin4x-1/2inte^(2x)sin4xdx

Now take u = e^(2x) and dv = sin4xdx

I=1/4e^(2x)sin4x-1/2[-1/4e^(2x)cos4x +1/2inte^(2x)cos4xdx]

I = 1/4e^(2x)sin4x+ 1/8 e^(2x)cos4x - 1/4 I

Solve for I = 1/5e^(2x)sin4x+ 1/10 e^(2x)cos4x +C