How do you find the integral of e^(7x)*sin(2x)dx?

1 Answer
Apr 11, 2018

int e^(7x) sin 2x dx = (e^(7x)(7sin 2x - 2cos2x))/53 +C

Explanation:

Integrate by parts:

int e^(7x) sin 2x dx = int sin 2x d(e^(7x)/7)

int e^(7x) sin 2x dx = (e^(7x)sin 2x)/7 - 2/7 int e^(7x)cos 2x dx

and then again:

int e^(7x) sin 2x dx = (e^(7x)sin 2x)/7 - 2/7 int cos 2x d(e^(7x)/7)

int e^(7x) sin 2x dx = (e^(7x)sin 2x)/7 - (2e^(7x)cos2x)/49 - 4/49 int e^(7x) sin 2x dx

The same integral now appears on both sides of the equation and we can solve for it:

53/49 int e^(7x) sin 2x dx = (e^(7x)sin 2x)/7 - (2e^(7x)cos2x)/49 +C

int e^(7x) sin 2x dx = (e^(7x)(7sin 2x - 2cos2x))/53 +C