How do you find the integral of (e8x)sin(9x)dx?

1 Answer
Mar 7, 2018

e8xsin(9x)dx=1145e8x(8sin(9x)9cos(9x))+C

Explanation:

(1) e8xsin(9x)dx

We need to use integration by parts.

udv=uvvdu

It's useful to remember the acronym LIATE: Log, Inverse Trig, Algebraic, Trig, Exponential for knowing the prioritization of choosing your u value.

Since trigonometric functions take precedence over exponentials, we will use u=sin(9x).

Substitution:
u=sin(9x)
du=9cos(9x)dx
dv=e8xdx
v=18e8x

(2) e8xsin(9x)dx=18e8xsin(9x)98e8xcos(9x)dx

Since we haven't improved our situation, it looks like another round of integration by parts. Let's use the letters y and z, and let y=cos(9x) and integrate the RHS integral by parts.

ydz=yzzdy

Substitution:
y=cos(9x)
dy=9sin(9x)dx
dz=e8xdx
z=18e8x

(3) e8xcos(9x)dx=18e8xcos(9x)+98e8xsin(9x)dx

Substituting (3) (2):

(4) e8xsin(9x)dx=18e8xsin(9x)98(18e8xcos(9x)+98e8xsin(9x)dx)

e8xsin(9x)dx=18e8xsin(9x)964e8xcos(9x)8164e8xsin(9x)dx

14564e8xsin(9x)dx=18e8xsin(9x)964e8xcos(9x)

=64145(18e8xsin(9x)964e8xcos(9x))+C

=8145e8xsin(9x)9145e8xcos(9x)+C

=1145e8x(8sin(9x)9cos(9x))+C