Integrate by parts:
int 5^x sinx dx = int 5^x d/dx (-cosx) dx
int 5^x sinx dx = = -5^xcosx + int cosx d/dx(5^x) dx
int 5^x sinx dx = = -5^xcosx + ln5 int cosx 5^xdx
and then again:
int 5^x sinx dx = = -5^xcosx + ln5 int d/dx(sinx) 5^xdx
int 5^x sinx dx = = -5^xcosx + ln5sinx5^x - ln5 int sinx d/dx( 5^x)dx
int 5^x sinx dx = = 5^x(ln5sinx- cosx) - ln^2 5 int sinx5^xdx
The integral now appears on both sides of the equation and we can solve for it:
(1+ln^2 5)int 5^x sinx dx = 5^x(ln5sinx- cosx)+C
int 5^x sinx dx = (5^x(ln5sinx- cosx))/(1+ln^2 5)+C