How do you find the integral of sqrt (t)*ln (t) dt?

1 Answer
Sep 4, 2015

use integration by parts to find intsqrt(t)ln(t)dt=2/3t^(3/2)(ln(t)-2/3)+C

Explanation:

We use integration by parts by noting that sqrt(t)=d/dt(2/3t^(3/2)).
Therefore
intsqrt(t)ln(t)dt=2/3intln(t)d(t^(3/2))=2/3(ln(t)t^(3/2)-intt^(3/2)dln(t)).
Since d/dt(ln(t))=1/t this gives
intsqrt(t)ln(t)dt=2/3(ln(t)t^(3/2)-intt^(3/2)/tdt)=2/3(ln(t)t^(3/2)-intt^(1/2)dt)=2/3(ln(t)t^(3/2)-2/3t^(3/2))+C=2/3t^(3/2)(ln(t)-2/3)+C
With C the integration constant.