How do you find the integral of x^2 / sqrt (x-1) dx? Calculus Techniques of Integration Integration by Parts 1 Answer Ratnaker Mehta Jun 2, 2018 2/15*sqrt(x-1)(3x^2+4x+8)+C. Explanation: Let, I=intx^2/sqrt(x-1)dx. Subst. x-1=t^2. :. x=t^2+1. :. dx=2tdt. :. I=int(t^2+1)^2/t*2tdt, =2int(t^4+2t^2+1)dt, =2(t^5/5+2*t^3/3+t), =(2t)/15(3t^4+10t^2+15), =2/15*sqrt(x-1){3(x-1)^2+10(x-1)+15}. rArr I=2/15*sqrt(x-1)(3x^2+4x+8)+C. Enjoy Maths.! Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 63665 views around the world You can reuse this answer Creative Commons License