How do you find the integral of x^2 / sqrt (x-1) dx?

1 Answer
Jun 2, 2018

2/15*sqrt(x-1)(3x^2+4x+8)+C.

Explanation:

Let, I=intx^2/sqrt(x-1)dx.

Subst. x-1=t^2. :. x=t^2+1. :. dx=2tdt.

:. I=int(t^2+1)^2/t*2tdt,

=2int(t^4+2t^2+1)dt,

=2(t^5/5+2*t^3/3+t),

=(2t)/15(3t^4+10t^2+15),

=2/15*sqrt(x-1){3(x-1)^2+10(x-1)+15}.

rArr I=2/15*sqrt(x-1)(3x^2+4x+8)+C.

Enjoy Maths.!