How do you find the partial sum of Sigma (1000-5n) from n=0 to 50?
1 Answer
Feb 18, 2017
sum_(n=0)^50 (1000-5n) = 44625
Explanation:
sum_(n=0)^50 (1000-5n) = sum_(n=0)^50 (1000) - 5sum_(n=0)^50(n) =
We can use the standard result
sum_(n=0)^50 (1000) = 1000+1000+ ... +1000 \ (51 terms) # sum_(i=0)^n i=0+ sum_(i=1)^n #
So we get:
sum_(n=0)^50 (1000-5n) = (51)(1000) - 5*1/2(50)(50+1)
" "= 51000 - 5/2(50)(51)
" "= 51000 - 6375
" " = 44625