How do you find the partial sum of Sigma (1000-5n) from n=0 to 50?

1 Answer
Feb 18, 2017

sum_(n=0)^50 (1000-5n) = 44625

Explanation:

sum_(n=0)^50 (1000-5n) = sum_(n=0)^50 (1000) - 5sum_(n=0)^50(n) =

We can use the standard result sum_(i=1)^n i = 1/2n(n+1) , and note that:

sum_(n=0)^50 (1000) = 1000+1000+ ... +1000 \ (51 terms) #sum_(i=0)^n i=0+ sum_(i=1)^n #

So we get:

sum_(n=0)^50 (1000-5n) = (51)(1000) - 5*1/2(50)(50+1)
" "= 51000 - 5/2(50)(51)
" "= 51000 - 6375
" " = 44625