How do you find the partial sum of Sigma (1000-n) from n=1 to 250?
1 Answer
Mar 26, 2018
sum_(r=1)^250 (1000-r) = 218625
Explanation:
Let us denote the sum:
S_n = sum_(r=1)^n (1000-r)
Then we can use the standard result for the sum of the first
sum_(r=1)^n r = 1/2n(n+1)
And so we get:
S_n = sum_(r=1)^n (1000) - sum_(r=1)^n(r)
\ \ \ \ = 1000n - 1/2n(n+1)
\ \ \ \ = n/2{2000 - (n+1)}
\ \ \ \ = n/2(2000-n-1)
\ \ \ \ = n/2(1999-n)
Using this result, the desired sum is:
sum_(r=1)^250 (1000-r) = S_250
" " = 250/2(1999-250)
" " = 125(1749)
" " = 218625