How do you find the partial sum of Sigma (1000-n) from n=1 to 250?

1 Answer
Mar 26, 2018

sum_(r=1)^250 (1000-r) = 218625

Explanation:

Let us denote the sum:

S_n = sum_(r=1)^n (1000-r)

Then we can use the standard result for the sum of the first n integers (Using the formula for Arithmetic progression):

sum_(r=1)^n r = 1/2n(n+1)

And so we get:

S_n = sum_(r=1)^n (1000) - sum_(r=1)^n(r)
\ \ \ \ = 1000n - 1/2n(n+1)

\ \ \ \ = n/2{2000 - (n+1)}

\ \ \ \ = n/2(2000-n-1)

\ \ \ \ = n/2(1999-n)

Using this result, the desired sum is:

sum_(r=1)^250 (1000-r) = S_250
" " = 250/2(1999-250)
" " = 125(1749)
" " = 218625