How do you find the period and frequency of a sine function?

1 Answer
Jul 14, 2018

The period is #=2pi# ad the frequency is #=1/(2pi)#

Explanation:

The period #T# of a periodic function #f(x)# is

#f(x)=f(x+T)#

Here,

#f(x)=sinx#............................#(1)#

Therefore,

#f(x+T)=sin(x+T)#

#=sinxcosT+cosxsinT#...........................#(2)#

Comparing equations #(1)# and #(2)#

#{(cosT=1),(sinT=0):}#

#=>#, #T=2pi#

The period is #=2pi#

The frequency is

#f=1/T=1/(2pi)#

graph{sinx [-3.75, 16.25, -5, 5]}