How do you find the range of f(x) =x^2-1f(x)=x21 for the domain D={-2,-1,0,2}?

1 Answer
Apr 11, 2017

R={-1,0,3}R={1,0,3}

Explanation:

The range is the set of values of f(x)f(x) you can get from your domain. So given f(x)=x^2-1f(x)=x21 and domain D={-2,-1,0,2}D={2,1,0,2}, all you have to do is plug in the elements of your domain into your function.

color(red)(x=-2)x=2

[1]" "f(-2)=(-2)^2-1[1] f(2)=(2)21

[2]" "f(-2)=4-1[2] f(2)=41

[3]" "color(red)(f(-2)=3)[3] f(2)=3

color(blue)(x=-1)x=1

[1]" "f(-1)=(-1)^2-1[1] f(1)=(1)21

[2]" "f(-1)=1-1[2] f(1)=11

[3]" "color(blue)(f(-1)=0)[3] f(1)=0

color(green)(x=0)x=0

[1]" "f(0)=(0)^2-1[1] f(0)=(0)21

[2]" "f(0)=0-1[2] f(0)=01

[3]" "color(green)(f(0)=-1)[3] f(0)=1

color(orange)(x=2)x=2

[1]" "f(2)=(2)^2-1[1] f(2)=(2)21

[2]" "f(2)=4-1[2] f(2)=41

[3]" "color(orange)(f(2)=3)[3] f(2)=3

Now that you have solved for all the possible values of f(x)f(x), your range is:

R={-1,0,3}R={1,0,3}