How do you find the rectangular coordinate of # (-4, pi/3)#? Precalculus Polar Coordinates Converting Coordinates from Polar to Rectangular 1 Answer BeeFree Nov 11, 2015 #pi/3# is in quadrant I. However, the negative value for the magnitude places the coordinate into quadrant III Explanation: #x = -4cos(pi/3)=-4(1/2)=-2# #y=-4sin(pi/3)=-4(sqrt3/2)=-2sqrt3# rectangular coordinate #=(-2,-2sqrt3)# hope that helped Answer link Related questions What is the formula for converting polar coordinates to rectangular coordinates? How do I convert polar coordinates #(5, 30^circ)# to rectangular coordinates? How do I convert polar coordinates #(3.6, 56.31)# to rectangular coordinates? How do I convert polar coordinates #(10, -pi/4)# to rectangular coordinates? How do I convert polar coordinates #(4,-pi/3)# to rectangular coordinates? How do I convert polar coordinates #(6, 60^circ)# to rectangular coordinates? How do I convert polar coordinates #(-4, 230^circ)# to rectangular coordinates? What is the Cartesian equivalent of polar coordinates #(sqrt97, 66^circ)#? What is the Cartesian equivalent of polar coordinates #(2, pi/6)#? What is the Cartesian equivalent of polar coordinates #(7, pi)#? See all questions in Converting Coordinates from Polar to Rectangular Impact of this question 6698 views around the world You can reuse this answer Creative Commons License