How do you find the remainder for (2x^2+x-6)div(x+2)(2x2+x6)÷(x+2)?

1 Answer
Jul 28, 2018

(2x^2+x-6)=(x+2)(2x-3)+(0)(2x2+x6)=(x+2)(2x3)+(0)

"Remainder"=0Remainder=0

Explanation:

Using synthetic division :

diamond(2x^2+x-6)div(x+2)(2x2+x6)÷(x+2)

We have , p(x)=2x^2+x-6 and "divisor :"x=-2p(x)=2x2+x6anddivisor :x=2

We take ,coefficients of p(x) to 2,1, -6p(x)2,1,6

-2 |2 2color(white)(.......)1color(white)(..)-6
ulcolor(white)(....)| ul(0color(white)( ...)-4color(white)(.......)6
color(white)(......)2color(white)(...)-3color(white)(.......)color(violet)(ul|0|
We can see that , quotient polynomial :

q(x)=2x-3 and"the Remainder"=0

Hence ,

(2x^2+x-6)=(x+2)(2x-3)+(0)
...............................................................................................