How do you find the six trigonometric functions of 420 degrees? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. · Nghi N May 3, 2015 #sin 420 = sin (60 + 360) = sin 60 = (sqrt3)/2#(1) #cos 420 = cos (60 + 360) = cos 60 = 1/2# (2) #tan 420 = ((1))/((2) )= sqrt3# #cot 420 = 1/(sqrt3) = (sqrt3)/3# #sec 420 = 1/cos 420 = 2# #sin 420 = 1/sin 420 = (2sqrt3)/3# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 25168 views around the world You can reuse this answer Creative Commons License