How do you find the surface area of the solid obtained by rotating about the xx-axis the region bounded by x=1+2y^2x=1+2y2 on the interval 1<=y<=21y2 ?

1 Answer
Sep 20, 2014

The surface area is pi/24[(65)^{3/2}-(17)^{3/2}]π24[(65)32(17)32].

Let us look at some details.

x=1+2y^2x=1+2y2

By differentiating with respect to yy,

{dx}/{dy}=4ydxdy=4y

So, we can find the surface area SS by

S=2pi int_1^2 ysqrt{1+({dx}/{dy})^2} dyS=2π21y1+(dxdy)2dy

=2pi int_1^2 ysqrt{1+16y^2}dy=2π21y1+16y2dy

by substitution u=1+16y^2u=1+16y2.
Rightarrow {du}/{dy}=32y Rightarrow{dy}/{du}=1/{32y} Rightarrow dy={du}/{32y}dudy=32ydydu=132ydy=du32y

y: 1 to 2 Rightarrow u: 17 to 65y:12u:1765

=2pi int_{17}^{65}ysqrt{u}{du}/{32y}=2π6517yudu32y

=pi/16 int_{17}^{65}u^{1/2}du=π166517u12du

=pi/16 [2/3u^{3/2}]_{17}^{65}=π16[23u32]6517

=pi/24[(65)^{3/2}-(17)^{3/2}]=π24[(65)32(17)32]