How do you find the value of a if the infinite geometric series #a+ a^2 + 2^3 + ...... =4a#, a cannot equal to 0?
1 Answer
Nov 27, 2015
Assuming the
#(1-a)4a = (1-a)(sum_(n=1)^oo a^n) = a#
Hence
Explanation:
#(1-a)(sum_(n=1)^N a^n)#
#=sum_(n=1)^N a^n - a sum_(n=1)^N a^n#
#=a+color(red)(cancel(color(black)(sum_(n=2)^N a^n)))-color(red)(cancel(color(black)(sum_(n=2)^N a^n)))-a^(N+1)#
#=a-a^(N+1)#
If
#(1-a)(sum_(n=1)^oo a^n) = lim_(N->oo) (a-a^(N+1)) = a#
(If
So:
#(1-a)4a = (1-a)(sum_(n=1)^oo a^n) = a#
We are told that
#4(1-a) = 1#
So:
So: