How do you find the value of cos [2 Sin^-1 (-24/25)]?

1 Answer
May 17, 2015

For any angle theta, we have cos 2theta = cos^2 theta - sin^2 theta. We also know that sin^2 theta + cos ^2 theta = 1.

So cos 2theta = cos^theta - sin^2theta

= (1-sin^2 theta)-sin^2theta

=1-sin^2theta

If theta = sin^-1(-24/25)

then sin theta = -24/25

and cos 2theta = 1-sin^2theta

=1-(-24/25)^2

=1-(24/25)^2

=1-24^2/25^2

=(25^2-24^2)/25^2

=((24+1)^2-24)/25^2

=((2xx24)+1)/25^2

=49/625