How do you find the value of sec((5pi)/4)?

1 Answer
Apr 6, 2018

color(blue)(-sqrt(2))

Explanation:

Identities:

color(red)bb(secx=1/cosx) \ \ \ \ [1]

color(red)bb(cos(A+B)=cosAcosB-sinAsinB) \ \ \ [2]

cos((5pi)/4)=cos(pi+pi/4)

Using [2]

cos(pi+pi/4)=cos(pi)cos(pi/4)-sin(pi)sin(pi/4)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(-1)(sqrt(2)/2)-(0)((sqrt(2))/2)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =-sqrt(2)/2

Using [1]

1/cosx\ \ \ \ \ \ \ \ \ \ \ \ =-1/(sqrt(2)/2)=-sqrt(2)

:.

color(blue)(sec((5pi)/4)=-sqrt(2))