First, note that cos(-2t)=cos(2t)cos(−2t)=cos(2t) and sin(-2t)=-sin(2t)sin(−2t)=−sin(2t) since cosine is an even function and sine is an odd function.
Now integrate to get v(t)=-2sin(2t)i-2cos(2t)j-t^2k+\vec{c}v(t)=−2sin(2t)i−2cos(2t)j−t2k+→c, where \vec{c}→c is a constant of integration. Since v(0)=i+kv(0)=i+k and since sin(0)=0sin(0)=0 and cos(0)=1cos(0)=1, it follows that \vec{c}=i+2j+k→c=i+2j+k so that v(t)=(-2sin(2t)+1)i+(-2cos(2t)+2)j+(1-t^2)kv(t)=(−2sin(2t)+1)i+(−2cos(2t)+2)j+(1−t2)k.
Now integrate again to get r(t)=(cos(2t)+t)i+(-sin(2t)+2t)j+(t-\frac{1}{3}t^{3})k+\vec{c}r(t)=(cos(2t)+t)i+(−sin(2t)+2t)j+(t−13t3)k+→c. Since r(0)=i+j+kr(0)=i+j+k, it follows that \vec{c}=j+k→c=j+k so that r(t)=(cos(2t)+t)i+(-sin(2t)+2t+1)j+(t-\frac{1}{3}t^{3}+1)kr(t)=(cos(2t)+t)i+(−sin(2t)+2t+1)j+(t−13t3+1)k