How do you find the vertex and axis of symmetry, and then graph the parabola given by: # f(x)=-4x^2 #?

1 Answer
Apr 7, 2018

The axis of symmetry is #x=0#.

The vertex is #(9,0)#.

Explanation:

Given:

#f(x)=-4x^2# is a quadratic equation in standard form:

#f(x)=ax^2+bx+c#,

where:

#a=-4#, #b=0#, #c=0#.

The axis of symmetry and the #x# coordinate of the vertex can be found using the formula:

#x=(-b)/(2a)#

#x=0/(2*0)#

#x=0#

To find the #y# coordinate of the vertex, substitute #y# for #f(x)# and #0# for #x#.

#y=-4(0)^2#

#y=0#

The vertex is #(0,0)#. Since #a<0#, the vertex is the maximum point and the parabola opens downward.

There are no x- or y-intercepts. We can determine additional points by substituting values for #x# and solving for #y#.

When #x=-1/2#,

#y=-4(-1/2)^2#

#y=-4xx1/4#

#y=-1#

Point: #(-1/2,-1)#

When #x=1/2#,

#y=-4(1/2)^2#

#y=-4xx1/4#

#y=-1#

Point: #(1/2,-1)#

When #x=-1#,

#y=-4(-1)^2#

#y=-4xx1#

#y=-4#

Point: #(-1,-4)#

When #x=1#,

#y=-4(1)^2#

#y=-4xx1#

#y=-4#

Point: #(1,-4)#

Plot the vertex and additional points and sketch a parabola through them. Do not connect the dots.

graph{y=-4x^2 [-10, 10, -5, 5]}