How do you find the vertex of y=2x^2+10x+8?

1 Answer
Mar 30, 2018

(-5/2,-9/2)

Explanation:

"Given the equation of a parabola in "color(blue)"standard form"

•color(white)(x)y=ax^2+bx+c color(white)(x);a!=0

"then the x-coordinate of the vertex is"

•color(white)(x)x_(color(red)"vertex")=-b/(2a)

y=2x^2+10x+8" is in standard form"

"with "a=2,b=10" and "c=8

rArrx_("vertex")=-10/4=-5/2

"substitute this value into the equation for y-coordinate"

y_("vertex")=2(-5/2)^2+10(-5/2)+8=-9/2

rArrcolor(magenta)"vertex "=(-5/2,-9/2)
graph{2x^2+10x+8 [-10, 10, -5, 5]}