How do you find the vertex of y=2x^2+10x+8?
1 Answer
Mar 30, 2018
Explanation:
"Given the equation of a parabola in "color(blue)"standard form"
•color(white)(x)y=ax^2+bx+c color(white)(x);a!=0
"then the x-coordinate of the vertex is"
•color(white)(x)x_(color(red)"vertex")=-b/(2a)
y=2x^2+10x+8" is in standard form"
"with "a=2,b=10" and "c=8
rArrx_("vertex")=-10/4=-5/2
"substitute this value into the equation for y-coordinate"
y_("vertex")=2(-5/2)^2+10(-5/2)+8=-9/2
rArrcolor(magenta)"vertex "=(-5/2,-9/2)
graph{2x^2+10x+8 [-10, 10, -5, 5]}