How do you find the x and y intercepts for #y = -2(x-1)^2 + 3#?

2 Answers
Apr 3, 2018

#y# intercept is 1
#x# intercepts are 2.22 and -0.22

Explanation:

The #y# intercept is when #x =0#
#=># #y = -2(0 -1)^2 +3#

#=># #y = -2 ##xx# 1 +3#

#=># #y = -2 +3#

#=># #y = 1#

The #x# intercept is when #y = 0#
#=># #0 = -2(x -1)^2 +3#

#=># #0 = -2 (x^2 -2x +1) +3#

#=># #0 = -2x^2 +4x -2 +3#

#=># #2x^2 -4x -1 = 0#

Use the formula #x=(-b\pm sqrt(b^2 -4ac))/(2a)#

#x=(4\pm sqrt(16+8))/(4)#

#x=(4 +sqrt(24))/4# or #x = (4 - sqrt(24))/4#
#x = 2.22474487# or #x = -0.22474487#

Apr 3, 2018

#p_(x_1)(1+sqrt(3/2)|0) or p_(x_2)(1-sqrt(3/2)|0)#
#p_y(0|1)#

Explanation:

Lets start with the interception of the y-axis. At the point where the graph intercepts this axis, #x=0#. Furthermore, it is the only point where #x=0#.

#y = -2(x-1)^2 + 3#
#x=0#
#y = -2(0-1)^2 + 3#
#y = -2 + 3=1#
#p_y(0|1)#

It works the same way for the x-axis. The only difference is that #y=0# instead of #x=0#.

#0 = -2(x-1)^2 + 3|-3#
#-3 = -2(x-1)^2 |:(-2)#
#3/2=(x-1)^2|sqrt()#
#+-sqrt(3/2)=x-1|+1#
#1+-sqrt(3/2)=x#
#p_1(1+sqrt(3/2)|0) or p_2(1-sqrt(3/2)|0)#

graph{y=-2(x-1)^2+3 [-2, 4, -5, 5]}