How do you find the x intercepts of y=tan^2((pix)/6)-3?

1 Answer
Mar 18, 2017

x={.........-16,-14,-10,-8,-4,-2,2,4,8,10,14,16,.........}

Explanation:

y = tan^2((pix)/6) -3

x-intercept is when y = 0

0 = tan^2((pix)/6) - 3

or 3 = tan^2((pix)/6)

tan((pix)/6)=+-sqrt3

tan^-1(+-sqrt3) = (pix)/6 and as tan(+-pi/3)=+-sqrt3

(pix)/6=npi+-pi/3,, where n is an integer

x/6=n+-1/3

x=6n+-2

i.e. x={.........-16,-14,-10,-8,-4,-2,2,4,8,10,14,16,.........}

graph{(tan(pix/6))^2-3 [-16, 16, -8, 8]}