How do you find three cube roots of #-i#?
1 Answer
Oct 23, 2017
Explanation:
The primitive complex cube root of
#omega = cos((2pi)/3)+isin((2pi)/3) = -1/2+sqrt(3)/2i#
Note that:
#i^3 = i^2 * i = -i#
So one of the cube roots is
#iomega = i(-1/2+sqrt(3)/2i) = -sqrt(3)/2i-1/2i#
#iomega^2 = i(-1/2-sqrt(3)/2i) = sqrt(3)/2i-1/2i#
Here are the three cube roots of
graph{(x^2+(y-1)^2-0.002)((x-sqrt(3)/2)^2+(y+1/2)^2-0.002)((x+sqrt(3)/2)^2+(y+1/2)^2-0.002)(x^2+y^2-1) = 0 [-2.5, 2.5, -1.25, 1.25]}