How do you give the six trigonometric function values of pi/3?

1 Answer
Aug 6, 2017

"see explanation"see explanation

Explanation:

"using the right triangle with angles and sides"using the right triangle with angles and sides

pi/2,pi/6,pi/3larrcolor(red)" angles"π2,π6,π3 angles

1,sqrt3,2larrcolor(red)" sides"1,3,2 sides

"in relation to "cos(pi/3)in relation to cos(π3)

1" is adjacent ",sqrt3" is opposite",2" is hypotenuse"1 is adjacent ,3 is opposite,2 is hypotenuse

•color(white)(x)cos(pi/3)=1/2xcos(π3)=12

•color(white)(x)sec(pi/3)=1/cos(pi/3)=1/(1/2)=2xsec(π3)=1cos(π3)=112=2

•color(white)(x)sin(pi/3)=sqrt3/2xsin(π3)=32

•color(white)(x)csc(pi/3)=1/sin(pi/3)=1/(sqrt3/2)=2/sqrt3xcsc(π3)=1sin(π3)=132=23

•color(white)(x)tan(pi/3)=sin(pi/3)/(cos(pi/3))=(sqrt3/2)/(1/2)=sqrt3xtan(π3)=sin(π3)cos(π3)=3212=3

•color(white)(x)cot(pi/3)=1/tan(pi/3)=1/sqrt3xcot(π3)=1tan(π3)=13