How do you graph (2x^2) /( x^2 - 9)?

1 Answer
Aug 16, 2015

y = (2x^2)/(x^2-9) = (2(x^2-9+9))/(x^2-9) = 2 + 18/((x+3)(x-3)) = 2 - 3/(x+3) + 3/(x-3)

Vertical asymptotes:
x = 3 and x = -3
lim_(x rarr 3^(+-)) = +-oo
lim_(x rarr -3^(+-)) = ""_+^(-)oo

Horizontal asymptotes:
y = 2
lim_(x rarr +- oo) = 2^+

Stationary points:
y' = 3/(x+3)^2 - 3/(x-3)^2 = 0
x = 0, y = 0

y'' = -6/(x+3)^3 + 6/(x-3)^3
y''|_(x=0) = -4/9 < 0, therefore local maxima

graph{(2x^2)/((x-3)(x+3)) [-6, 6, -10 10]}