How do you graph f(x) = 2/3x^2 - 5f(x)=23x25?

1 Answer
Aug 3, 2017

See a solution process below:

Explanation:

Setting xx to 00 gives us the point:

f(x) = (2/3 * 0^2) - 5f(x)=(2302)5

f(x) = -5f(x)=5

Or

0, -50,5

We can find the 00s by solving the function for 00:

2/3x^2 - 5 = 023x25=0

2/3x^2 - 5 + 5 = 0 + 523x25+5=0+5

2/3x^2 - 0 = 523x20=5

3/2 xx 2/3x^2 = 3/2 xx 532×23x2=32×5

x^2 = 15/2x2=152

x^2 = +-sqrt(15/2)x2=±152

Or

(-sqrt(15/2), 0)(152,0) and (-sqrt(15/2), 0)(152,0)

graph{(y-((2x^2)/3)+5)(x^2+(y+5)^2-0.125)((x+(15/2)^(1/2))^2+(y)^2-0.125)((x-(15/2)^(1/2))^2+(y)^2-0.125)=0 [-20, 20, -10, 10]}