How do you graph f(x) = 4 sin(x - pi/2 ) + 1f(x)=4sin(xπ2)+1?

1 Answer
Jul 28, 2018

As below.

Explanation:

Standard form of sine function is f(x) = A sin (Bx - C) + Df(x)=Asin(BxC)+D

Given f(x) = 4 sin (x - pi/2) + 1f(x)=4sin(xπ2)+1

A = 4, B = 1, C = pi/2, D = 1A=4,B=1,C=π2,D=1

#Amplitude = |A| = 4,

Period = (2pi) / |B| = (2pi)/1 = 2pi=2π|B|=2π1=2π

Phase Shift = -C / B = -(pi/2) / (1) = -pi/2, color(brown)(pi/2=CB=π21=π2,π2 to the LEFT.

Vertical Shift D = 1D=1

graph{4 sin(x - pi/2) + 1 [-10, 10, -5, 5]}