How do you graph r=5sin(3/4theta)r=5sin(34θ)?

1 Answer
Jul 13, 2018

See explanation. The function for graph is quite lengthy. I had already paved way, for making idiosyncratic graphs of r = sin ( m/n )thetar=sin(mn)θ and r = cos ( m/n )thetar=cos(mn)θ

Explanation:

See
https://socratic.org/questions/how-do-you-create-a-graph-of-r-3-sin-7theta-5

0 <= r <= 50r5.

The period is (8/3)pi(83)π.. No graph for negative r., when

(3/4)theta in ( pi, 2pi ) rArr theta in ((4/3)pi, (8/3)pi)(34)θ(π,2π)θ((43)π,(83)π).

For four complete rotations, through 8pi8π, three loop sought to

be created.

Upon setting (8/3)pi = k(2pi)(83)π=k(2π), for least integer k, ,k = 3 #..

Use sin 3theta = sin 4(3/4theta)sin3θ=sin4(34θ) and expand both.

3 cos^2theta sin theta - sin^3theta3cos2θsinθsin3θ

= 4 (cos^3(3/4theta) sin(3/4theta)=4(cos3(34θ)sin(34θ)

- cos(3/4theta) sin^3(3/4theta)cos(34θ)sin3(34θ)

Now switch over to Cartesian form, using astutely

sin(3/4theta) = r / 5, cos(3/4theta) = sqrt ( 1 - r^2/25),sin(34θ)=r5,cos(34θ)=1r225,

r (cos theta, sin theta ) = ( x, y ) and r= sqrt ( x^2 + y^3 )r(cosθ,sinθ)=(x,y)andr=x2+y3, to get

3 x^2 y - y^3 = 4 ( x^2 + y^2 )^1.5(( 1 - (x^2 + y^2 )/25)^1.53x2yy3=4(x2+y2)1.5((1x2+y225)1.5

( (x^2 + y ^2)/25 )^0.5 -( 1 - (x^2 + y^2 )/25)^0.5(x2+y225)0.5(1x2+y225)0.5

(( x^2 + y ^2 )/25)^1.5)(x2+y225)1.5)

I have paved the way. the Socratic graph is immediate.
graph{3x^2 y-y^3 - 0.0064 ( x^2 + y^2 )^2( 25 - (x^2 + y^2 ))^0.5( 25 - 2(x^2 + y^2 ) ) = 0[-10 10 -5 5]}
See graph of r = cos (3/4)thetar=cos(34)θ:
graph{x^3-3xy^2-(x^2+y^2)^1.5(8(x^2+y^2)^2-8(x^2+y^2)+1)=0[-2 2 -1 1]}