Given
color(white)("XXX")color(red)(x^2)+color(blue)(y^2)color(red)(-2x)color(blue)(+6y)color(green)(+6)=0
Rearrange grouping the x terms, the y terms, and with the constant on the right side
color(white)("XXX")color(red)(x^2-2x)+color(blue)(y^2+6y)=color(green)(-6)
Complete the square for the x sub-expression and the y sub-expression:
color(white)("XXX")color(red)(x^2-2x+1)+color(blue)(y^2+6y+9) = color(green)(-6)color(red)(+1)color(blue)(+9)
Write as the sum of squared binomials equal to a square
color(white)("XXX")color(red)((x-1)^2)+color(blue)((y+3)^2=color(green)(2^2)
Note that the equation for a circle with center (color(red)(a),color(blue)(b)) and radius color(green)(r) is
color(white)("XXX")(x-color(red)(a))^2+(y-color(blue)(b))^2=color(green)(r)^2
So we need to draw a circle with center at (color(red)(1),color(blue)(-3)) and radius color(green)(2)
graph{x^2+y^2-2x+6y+6=0 [-5.354, 4.51, -4.946, -0.015]}