How do you graph y=2csc[2(x+pi/6)]y=2csc[2(x+π6)]?

1 Answer
Jun 24, 2018

As Below.

Explanation:

y = 2 csc (2x + pi/3)y=2csc(2x+π3)

Standard form of cosecant function is y = A csc(Bx - C) + Dy=Acsc(BxC)+D

A = 2, B = 2, C = -pi/3, D = 0A=2,B=2,C=π3,D=0

Amplitude = |A| = "NONE" for cosecant function"Amplitude=|A|=NONEforcosecantfunction

"Period " = (2pi) / |B| = (2pi) / 2 = piPeriod =2π|B|=2π2=π

"Phase Shift " = -C / B = -(pi/3) / 2 = -pi/6, " " pi/6 " to the LEFT"Phase Shift =CB=π32=π6, π6 to the LEFT

"Vertical Shift " = D = 0Vertical Shift =D=0

graph{2 csc(2x + pi/3) [-10, 10, -5, 5]}