How do you graph #y=2tan(2x+pi/4)#? Trigonometry Graphing Trigonometric Functions Graphing Tangent, Cotangent, Secant, and Cosecant 1 Answer sankarankalyanam Oct 5, 2017 #y=2tan(2x+pi/4)# graph{2tan(2x+(pi/4)) [-10, 10, -5, 5]} Explanation: #y=a*tan(bx-c)+d# #Amplitude# #a=2# #Period=pi/b=pi/2# #Phase# shift#=c/b=(-pi/4)/2=-pi/8=pi/8# to the left #Vertical# shift#=d=0# Answer link Related questions How do you find the asymptotes for the cotangent function? How do you graph tangent and cotangent functions? How do you Sketch the graph of #y=-2+cot(1/3)x# over the interval #[0, 6pi]#? How do you graph #y=-3tan(x-(pi/4))# over the interval #[-pi, 2pi]#? How do you sketch a graph of #h(x)=5+frac{1}{2} \sec 4x# over the interval #[0,2pi]#? What is the amplitude, period and frequency for the function #y=-1+\frac{1}{3} \cot 2x#? How do you graph #y = 3 sec(2x)#? How do you graph #y=tan(2x+pi/4)#? What is the domain of #y = tan(x) + 2#? How do you graph #csc(x-pi/2)#? See all questions in Graphing Tangent, Cotangent, Secant, and Cosecant Impact of this question 3576 views around the world You can reuse this answer Creative Commons License