How do you graph y=3/2cos(1/2pix)y=32cos(12πx)?

1 Answer
May 4, 2018

As below.

Explanation:

y = A cos (Bx - C) + Dy=Acos(BxC)+D is the standard form

Given y = (3/2) cos ((pi/2) x)y=(32)cos((π2)x)

Amplitude = |A| = 3/2Amplitude=|A|=32

"Period " = (2pi) / |B| = (2pi) / (pi/2) = 4Period =2π|B|=2ππ2=4

"Phase Shift " = -C / B = 0Phase Shift =CB=0

"Vertical Shift " = D = 0Vertical Shift =D=0

graph{(3/2) cos ((pi/2)x) [-10, 10, -5, 5]}