How do you graph y=3x^2 +6x+1y=3x2+6x+1?

1 Answer
Apr 17, 2015

The equation represents a quadratic function, hence its graph would be a vertical parabola, opening upwards, as the coefficient of x^2x2 is positive. To sketch the curve we can get the vertex and the axis of symmetry from the give equation as follows:

y= 3(x^2 +2x) +13(x2+2x)+1
= 3(x^2 +2x+1) +1-33(x2+2x+1)+13
= 3(x+1)^2 -23(x+1)22
This shows the vertex as (-1, -2) and the axis of symmetry x= -1. The x intercepts would be-1 +- 1/3 sqrt61±136. The y intercept would be (0,1). With all these inputs, the curve can be easily sketched.