How do you graph #y=-4cos(1/2x-pi)+3#?
1 Answer
Feb 12, 2018
There are four main components in graphing this function:
Explanation:
- Amplitude - twice the
#y# distance from maximum to minimum - Period - the
#x# distance between a repetition of the values - Horizontal Phase Shift - the shift on the
#x# axis - Vertical Phase Shift - the shift on the
#y# axis
In the function
- Amplitude =
#a# - Period =
#(2pi)/b# - Horizontal Phase Shift =
#c/b# - Vertical Phase Shift =
#d#
Thus you can figure out:
- Amplitude =
#4# - Period =
#pi# - Horizontal Phase Shift =
#-pi/2# - Vertical Phase Shift =
#3#
Note:
The amplitude is always positive because distances can not be negative. When the
When you graph this function you will get:
graph{-4*cos(1/2x-pi)+3 [-9.46, 10.54, -1.76, 8.24]}