color(blue)("Investigating extremities")
color(brown)(y=Lim_(x->+-oo) (8x-4x^2)/((x+2)^2)->color(blue)((-4(+-x)^2)/((+-x)^2) = -4)
Note that x^2" " underline("'wins'") over the other values in this equations
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Investigating "x=0)
color(brown)(y= (8x-4x^2)/((x+2)^2)->color(blue)(0/4=0)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Investigating "y=0)
=>8x=4x^2
color(blue)(=> x=2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)(x_("intercepts") -> (x,y)-> (0,0)" and "(2,0)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)(y_("intercepts")->(x,y)-> (0,0) )
"'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(brown)("The equation is undefined at "x=-2" (excluded value)")
Let deltax be very small
Let x-2
Then we have
y=(8(-2+deltax) -4(-2+deltax)^2)/([(-2+deltax)+2]^2)
y=(-16+8deltax-4(4-4deltax+(deltax)^2))/((deltax)^2)
y=(-16+8deltax-16+16deltax-4(deltax)^2)/((deltax)^2)
y=-32/((deltax)^2) +24/(deltax)-4
as deltax becomes increasingly small then |-32/((deltax)^2)| >24/deltax .
color(brown)(y=lim_(deltax->0) -32/((deltax)^2) +24/(deltax)-4)color(blue)(-> -oo)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~