How do you graph y=(x-2)^2-3?
2 Answers
see explanation.
Explanation:
To sketch the parabola we require.
• " x and y intercepts"
• " coordinates of vertex"
• " whether maximum or minimum"
color(blue)"x and y intercepts"
"let x = 0"toy=(-2)^2-3=1to(0,1)
" let y = 0"to(x-2)^2-3=0
rArr(x-2)^2=3 Take
color(blue)"square root of both sides"
sqrt((x-2)^2)=+-sqrt3
rArrx-2=+-sqrt3
rArrx=sqrt3-2~~0.27to(0.27,0)
color(blue)"coordinates of vertex" The equation of a parabola in
color(blue)"vertex form" is.
color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))
where (h ,k) are the coordinates of the vertex and a is a constant.
y=(x-2)^2-3" is in this form"
rArr(2,-3)larrcolor(red)" coordinates of vertex"
color(blue)"maximum/minimum"
• " If " a>0" then minimum " uuu
• " If " a>0" then maximum " nnn
"here " a>0rArr" minimum" Utilising these key elements should enable a sketch of the graph to be made.
graph{(x-2)^2-3 [-10, 10, -5, 5]}
Explanation: