How do you graph y=(x-2)^2-3?

2 Answers
Apr 3, 2017

see explanation.

Explanation:

To sketch the parabola we require.

• " x and y intercepts"

• " coordinates of vertex"

• " whether maximum or minimum"

color(blue)"x and y intercepts"

"let x = 0"toy=(-2)^2-3=1to(0,1)

" let y = 0"to(x-2)^2-3=0

rArr(x-2)^2=3

Take color(blue)"square root of both sides"

sqrt((x-2)^2)=+-sqrt3

rArrx-2=+-sqrt3

rArrx=sqrt3+2~~3.73to(3.73,0)

rArrx=sqrt3-2~~0.27to(0.27,0)

color(blue)"coordinates of vertex"

The equation of a parabola in color(blue)"vertex form" is.

color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))
where (h ,k) are the coordinates of the vertex and a is a constant.

y=(x-2)^2-3" is in this form"

rArr(2,-3)larrcolor(red)" coordinates of vertex"

color(blue)"maximum/minimum"

• " If " a>0" then minimum " uuu

• " If " a>0" then maximum " nnn

"here " a>0rArr" minimum"

Utilising these key elements should enable a sketch of the graph to be made.
graph{(x-2)^2-3 [-10, 10, -5, 5]}

Apr 3, 2017

"graph of the function given has been shown in the fallowing figure."

Explanation:

enter image source here

y=(x-2)^2-3

y=x^2-4x+4-3

y=x^2-4x+1" "(1)

"we write x=0 in the equation above (1) to find y-intercept"

y=0^2-4*0+1" , "y=1 " , "D(0,1)

"we write y=0 in the equation above (1) to find x-intercept"

0=x^2-4x+1

x_1=(-b-sqrt(b^2-4ac))/(2a)

x_1=(4-sqrt(16-4*1*1))/(2*1)=(4-sqrt12)/2=0.27

x_1=(-b+sqrt(b^2-4ac))/(2a)

x_1=(4+sqrt(16-4*1*1))/(2*1)=(4+sqrt12)/2=3.73

B(0.27,0)" , "C(3.73,0)

"now let us find vertex "

"Let's equal zero by taking the derivative of the original equation."

d/(d x)(x^2-4x+1)=0

2x-4=0

2x=4" , "x=4/2=2

"let us put x=2 in the original function "

y=2^2-4*2+1

y=4-8+1

y=-3

D(2,-3)