How do you graph # y=(x-2)^2-3#?

2 Answers
Apr 3, 2017

see explanation.

Explanation:

To sketch the parabola we require.

#• " x and y intercepts"#

#• " coordinates of vertex"#

#• " whether maximum or minimum"#

#color(blue)"x and y intercepts"#

#"let x = 0"toy=(-2)^2-3=1to(0,1)#

#" let y = 0"to(x-2)^2-3=0#

#rArr(x-2)^2=3#

Take #color(blue)"square root of both sides"#

#sqrt((x-2)^2)=+-sqrt3#

#rArrx-2=+-sqrt3#

#rArrx=sqrt3+2~~3.73to(3.73,0)#

#rArrx=sqrt3-2~~0.27to(0.27,0)#

#color(blue)"coordinates of vertex"#

The equation of a parabola in #color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where (h ,k) are the coordinates of the vertex and a is a constant.

#y=(x-2)^2-3" is in this form"#

#rArr(2,-3)larrcolor(red)" coordinates of vertex"#

#color(blue)"maximum/minimum"#

#• " If " a>0" then minimum " uuu#

#• " If " a>0" then maximum " nnn#

#"here " a>0rArr" minimum"#

Utilising these key elements should enable a sketch of the graph to be made.
graph{(x-2)^2-3 [-10, 10, -5, 5]}

Apr 3, 2017

#"graph of the function given has been shown in the fallowing figure."#

Explanation:

enter image source here

#y=(x-2)^2-3#

#y=x^2-4x+4-3#

#y=x^2-4x+1" "(1)#

#"we write x=0 in the equation above (1) to find y-intercept"#

#y=0^2-4*0+1" , "y=1 " , "D(0,1)#

#"we write y=0 in the equation above (1) to find x-intercept"#

#0=x^2-4x+1#

#x_1=(-b-sqrt(b^2-4ac))/(2a)#

#x_1=(4-sqrt(16-4*1*1))/(2*1)=(4-sqrt12)/2=0.27#

#x_1=(-b+sqrt(b^2-4ac))/(2a)#

#x_1=(4+sqrt(16-4*1*1))/(2*1)=(4+sqrt12)/2=3.73#

#B(0.27,0)" , "C(3.73,0)#

#"now let us find vertex "#

#"Let's equal zero by taking the derivative of the original equation."#

#d/(d x)(x^2-4x+1)=0#

#2x-4=0#

#2x=4" , "x=4/2=2#

#"let us put x=2 in the original function "#

#y=2^2-4*2+1#

#y=4-8+1#

#y=-3#

#D(2,-3)#