How do you graph y = (x + 2) (3x + 2) ?
1 Answer
see explanation.
Explanation:
The standard form of the
color(blue)"quadratic function" is.
color(red)(bar(ul(|color(white)(2/2)color(black)(y=ax^2+bx+c ; a!=0)color(white)(2/2)|)))
rArry=(x+2)(3x+2)=3x^2+8x+4
rArr"here " a=3,b=8" and " c=4 To find the
color(blue)"x and y intercepts"
x=0toy=4larrcolor(red)" y-intercept"
y=0to(x+2)(3x+2)=0
rArrx=-2" or " x=-2/3larrcolor(red)"x-intercepts" To find the
color(blue)"vertex"
color(red)(bar(ul(|color(white)(2/2)color(black)(x_("vertex")=-b/(2a))color(white)(2/2)|)))
rArrx_("vertex")=-8/6=-4/3 Substitute this value into equation and solve for y
rArry_("vertex")=3(-4/3)^2+8(-4/3)+4=-4/3
rArrcolor(red)"vertex "=(-4/3,-4/3) To find
color(blue)"maximum/minimum"
• "If " a>0" then minimum " uuu
• " If " a < 0" then maximum " nnn
"here " a=3>0" hence " uuu
graph{3x^2+8x+4 [-11.25, 11.25, -5.63, 5.62]}