How do you graph y = (x + 2) (3x + 2) ?

1 Answer
Mar 25, 2017

see explanation.

Explanation:

The standard form of the color(blue)"quadratic function" is.

color(red)(bar(ul(|color(white)(2/2)color(black)(y=ax^2+bx+c ; a!=0)color(white)(2/2)|)))

rArry=(x+2)(3x+2)=3x^2+8x+4

rArr"here " a=3,b=8" and " c=4

To find the color(blue)"x and y intercepts"

x=0toy=4larrcolor(red)" y-intercept"

y=0to(x+2)(3x+2)=0

rArrx=-2" or " x=-2/3larrcolor(red)"x-intercepts"

To find the color(blue)"vertex"

color(red)(bar(ul(|color(white)(2/2)color(black)(x_("vertex")=-b/(2a))color(white)(2/2)|)))

rArrx_("vertex")=-8/6=-4/3

Substitute this value into equation and solve for y

rArry_("vertex")=3(-4/3)^2+8(-4/3)+4=-4/3

rArrcolor(red)"vertex "=(-4/3,-4/3)

To find color(blue)"maximum/minimum"

• "If " a>0" then minimum " uuu

• " If " a < 0" then maximum " nnn

"here " a=3>0" hence " uuu
graph{3x^2+8x+4 [-11.25, 11.25, -5.63, 5.62]}