How do you identify 1/(csctheta+1)-1/(csctheta-1)1cscθ+11cscθ1?

1 Answer

-2tan^2theta2tan2θ

Explanation:

I'm going to assume this needs to be simplified:

1/(csctheta+1)-1/(csctheta-1)1cscθ+11cscθ1

1/(1/sintheta+1)-1/(1/sintheta-1)11sinθ+111sinθ1

1/(1/sintheta+sintheta/sintheta)-1/(1/sintheta-sintheta/sintheta)11sinθ+sinθsinθ11sinθsinθsinθ

1/((1+sintheta)/sintheta)-1/((1-sintheta)/sintheta)11+sinθsinθ11sinθsinθ

sintheta/(1+sintheta)-sintheta/(1-sintheta)sinθ1+sinθsinθ1sinθ

sintheta/(1+sintheta)((1-sintheta)/(1-sintheta))-sintheta/(1-sintheta)((1+sintheta)/(1+sintheta))sinθ1+sinθ(1sinθ1sinθ)sinθ1sinθ(1+sinθ1+sinθ)

(sintheta(1-sintheta))/((1+sintheta)(1-sintheta))-(sintheta(1+sintheta))/((1-sintheta)(1+sintheta))sinθ(1sinθ)(1+sinθ)(1sinθ)sinθ(1+sinθ)(1sinθ)(1+sinθ)

(sintheta-sin^2theta)/((1+sintheta)(1-sintheta))-(sintheta+sin^2theta)/((1-sintheta)(1+sintheta))sinθsin2θ(1+sinθ)(1sinθ)sinθ+sin2θ(1sinθ)(1+sinθ)

(sintheta-sintheta-sin^2theta-sin^2theta)/((1+sintheta)(1-sintheta))sinθsinθsin2θsin2θ(1+sinθ)(1sinθ)

(-2sin^2theta)/((1-sin^2theta))2sin2θ(1sin2θ)

Recall that sin^2theta+cos^2theta=1=>1-sin^2theta=cos^2thetasin2θ+cos2θ=11sin2θ=cos2θ

(-2sin^2theta)/cos^2theta=-2tan^2theta2sin2θcos2θ=2tan2θ