How do you integrate (1-x^2)^.5?

1 Answer
Oct 12, 2016

int (1-x^2)^0.5 dx = 1/2 x sqrt(1-x^2) + 1/2 sin^(-1)x + C

Explanation:

Let x = sin theta

Then:

int (1-x^2)^0.5 dx = int (1-sin^2 theta)^0.5 ((d sin theta)/(d theta)) d theta

color(white)(int (1-x^2)^0.5 dx) = int (cos^2 theta)^0.5 (cos theta) d theta

color(white)(int (1-x^2)^0.5 dx) = int cos^2 theta d theta

color(white)(int (1-x^2)^0.5 dx) = int 1/2(cos 2 theta + 1) d theta

color(white)(int (1-x^2)^0.5 dx) = 1/4 sin 2 theta + theta/2 + C

color(white)(int (1-x^2)^0.5 dx) = 1/2 sin theta cos theta + theta/2 + C

color(white)(int (1-x^2)^0.5 dx) = 1/2 x sqrt(1-x^2) + 1/2 sin^(-1)x + C