How do you integrate 2xsin(x)dx2xsin(x)dx? Calculus Techniques of Integration Integration by Parts 1 Answer Gió Apr 22, 2015 I would use integration by Parts: int2xsin(x)dx=2[-xcos(x)+int1*cos(x)dx]=-2xcos(x)+2sin(x) +c∫2xsin(x)dx=2[−xcos(x)+∫1⋅cos(x)dx]=−2xcos(x)+2sin(x)+c Answer link Related questions How do I find the integral int(x*ln(x))dx∫(x⋅ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx∫(cos(x)ex)dx ? How do I find the integral int(x*cos(5x))dx∫(x⋅cos(5x))dx ? How do I find the integral int(x*e^-x)dx∫(x⋅e−x)dx ? How do I find the integral int(x^2*sin(pix))dx∫(x2⋅sin(πx))dx ? How do I find the integral intln(2x+1)dx∫ln(2x+1)dx ? How do I find the integral intsin^-1(x)dx∫sin−1(x)dx ? How do I find the integral intarctan(4x)dx∫arctan(4x)dx ? How do I find the integral intx^5*ln(x)dx∫x5⋅ln(x)dx ? How do I find the integral intx*2^xdx∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 22384 views around the world You can reuse this answer Creative Commons License