How do you integrate (-3/x) + (lnx/x^3) dx?

1 Answer
Mar 23, 2018

-3ln|x|-1/(4x^2)(2lnx+1)+C, or,

-3ln|x|-1/(4x^2)ln(ex^2)+C.

Explanation:

Prerequisite : The Rule of Integration by Parts (IBP) :

intuvdx=uintvdx-int{(du)/dxintvdx}dx.

Let, I=int(-3/x+lnx/x^3)dx,

=-3int1/xdx+intlnx/x^3dx,

=-3ln|x|+I_1," where, "I_1=intlnx/x^3dx.

For I_1, we use IBP with, u=lnx, and, v=1/x^3=x^-3.

:. (du)/dx=1/x, and, intvdx=x^(-3+1)/(-3+1)=-1/(2x^2).

:. I_1=-lnx/(2x^2)-int{(1/x)(-1/(2x^2))}dx,

=-lnx/(2x^2)+1/2int1/x^3dx,

=-lnx/(2x^2)+1/2*x^(-3+1)/(-3+1),

=-lnx/(2x^2)-1/(4x^2).

rArr I=-3ln|x|-1/(4x^2)(2lnx+1)+C, or,

I=-3ln|x|-1/(4x^2)ln(ex^2)+C.

Feel & Spread the Joy of Maths.!