How do you integrate (5x-3)^2dx(5x3)2dx?

1 Answer
May 25, 2018

int (5x-3)^2dx=1/15*(5x-3)^3+C(5x3)2dx=115(5x3)3+C

Explanation:

Making the substitution
t=5x-3t=5x3 then dx=1/5dtdx=15dt
then we have
1/5*int t^2dt15t2dt
using that int x^ndx=x^(n+1)/(n+1)+Cxndx=xn+1n+1+C with n ne -1n1 then we obatin
int (5x-3)^2dx=1/15*(5x-3)^3+C(5x3)2dx=115(5x3)3+C