How do you integrate (6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^36x52x4+3x3+x2x2x3?

1 Answer
May 29, 2018

=2x^3-x^2+3x+ln|x|+1/x+1/x^2+C=2x3x2+3x+ln|x|+1x+1x2+C

Explanation:

Since we're dividing by a single term, x^3,x3, we may simplify the integrand as follows:

(6x^5-2x^4+3x^3+x^2-x-2)/x^3=(6x^5)/x^3-(2x^4)/x^3+(3x^3)/x^3+x^2/x^3-x/x^3-2/x^36x52x4+3x3+x2x2x3=6x5x32x4x3+3x3x3+x2x3xx32x3

=6x^2-2x+3+1/x-1/x^2-2/x^3=6x22x+3+1x1x22x3

Thus, our integral becomes

int(6x^2-2x+3+1/x-1/x^2-2/x^3)dx(6x22x+3+1x1x22x3)dx

=int(6x^2-2x+3+1/x-x^-2-2x^-3)dx=(6x22x+3+1xx22x3)dx

Integrate, recalling that

intx^adx=x^(a+1)/(a+1)+C, a ne -1, int1/xdx=ln|x|+Cxadx=xa+1a+1+C,a1,1xdx=ln|x|+C

=int(6x^2-2x+3+1/x-x^-2-2x^-3)dx=6/3x^3-2/2x^2+3x+ln|x|+x^-1+2/2x^-2+C=(6x22x+3+1xx22x3)dx=63x322x2+3x+ln|x|+x1+22x2+C

=2x^3-x^2+3x+ln|x|+1/x+1/x^2+C=2x3x2+3x+ln|x|+1x+1x2+C