How do you integrate arctan(sqrt(x))dx?

1 Answer
Jul 21, 2016

int arctan(sqrt(x))dx = (x+1)arctan(sqrt(x))-sqrt(x)+C

Explanation:

Making y = sqrt(x) we have

dy = 1/2(dx)/sqrt(x) = 1/2 (dx)/y

int arctan(sqrt(x))dx equiv int 2y arctan(y)dy

Now

d/(dy)(y^2 arctan(y))=2yarctan(y)+y^2/(1+y^2)

but

y^2/(1+y^2) = 1-1/(1+y^2)

so

d/(dy)(y^2 arctan(y))=2yarctan(y)+1-1/(1+y^2)

Finally

int 2y arctan(y)dy=y^2arctan(y)-y+arctan(y)+C

or

int arctan(sqrt(x))dx = (x+1)arctan(sqrt(x))-sqrt(x)+C