How do you integrate by substitution int u^2sqrt(u^3+2)du?

1 Answer
Nov 17, 2016

The answer is =2/9(u^3+2)^(3/2) +C

Explanation:

We use intv^ndv=v^(n+1)/(n+1)+C (n!=-1)

Let's do the substitution,

x=u^3+2

then, dx=3u^2du =>u^2du=dx/3

Therefore, intu^2sqrt(u^3+2)du=int(sqrtxdx)/3

int(x^(1/2)dx)/3=x^(3/2)/(3*3/2)+C

=2x^(3/2)/9+C

intu^2sqrt(u^3+2)du=2/9(u^3+2)^(3/2) +C