How do you integrate by substitution int x^2(x^3+5)^4 dx?

1 Answer
Oct 31, 2016

int x^2(x^3+5)^4 dx =(x^3+5 )^5/15+C

Explanation:

We want to find I=int x^2(x^3+5)^4 dx

Let u=x^3+5 => (du)/dx=3x^2 , or 3x^2dx/(du)=1

We can then rewrite I as follows:

I=int x^2u^4 dx
:. I=1/3 int u^4 (3x^2)dx
:. I=1/3 int u^4 (3x^2)dx/(du)du (by the chain rule)

And using the above result we can now substitute to get:
I=1/3 int u^4 (1) du
:. I=1/3 int u^4 du
:. I=1/3 u^5/5+C
:. I=(x^3+5 )^5/15+C