How do you integrate cos(log(x)) dxcos(log(x))dx?

1 Answer
May 14, 2015

(I will assume logxlogx is natural log. (If not, insert ln10 where needed.)

int cos(log(x))dx = int xcos(log(x))*1/xdxcos(log(x))dx=xcos(log(x))1xdx

Let u=xu=x and dvdv is the rest of the integrand.
Now we can integrate v = int cos(log(x))*1/xdx = sin(log(x))v=cos(log(x))1xdx=sin(log(x))
(Use substitution with w=log(x)w=log(x))

Parts gives us:

int cos(log(x))dx = xsin(log(x)) - int sin(log(x)) dxcos(log(x))dx=xsin(log(x))sin(log(x))dx

Do the same trick again to get

int cos(log(x))dx = xsin(log(x)) + xcos(log(x)) - int cos(log(x)) dxcos(log(x))dx=xsin(log(x))+xcos(log(x))cos(log(x))dx

So

int cos(log(x))dx = 1/2(xsin(log(x)) + xcos(log(x))) cos(log(x))dx=12(xsin(log(x))+xcos(log(x)))